Civil Engineering Board Exam Scope

Civil Engineering Board ExamThese are the subjects covered by the Architecture Licensure Examination in the Philippines. If you are preparing for the Architecture Boards, make sure you cover all of these in your review:

Unless otherwise indicated, the topics of the subjects shall be effective in the May 1993 Licensure Examinations. The Syllabi shall be fully effective starting on the May 1994 examinations.

A. MATHEMATICS AND SURVEYING

Mathematics

1.0 Algebra
1.1 Set Theory*
1.2 Real Numbers
1.3 Algebraic Expressions and Operations
1.4 Equations and Inequalities
1.5 Roots and Powers
1.6 Linear, Quadratic and Polynomial Functions
1.7 Factoring
1.8 Roots of Algebraic Equations
1.9 System of Equations
1.10Logarithmic and Exponential Functions
1.11Arithmetic and Geometric Progressions
2.0 Trigonometry
2.1 Circular (Trigonometric) Functions
2.2 Trigonometric Identities and Equations
2.3 Solution of Triangles
2.4 Hyperbolic Functions
3.0 Analytic Geometry
3.1 Cartesian Coordinate System
3.2 Functions and Relations
3.3 Functions and their Graphs
3.4 Straight lines
3.5 Conic Sections
3.6 Polar Coordinates
3.7 Transformation of Coordinates
3.8 Parametric Equations
4.0 Calculus
4.1 Differential Equations
4.1.1 Limits and Continuity
4.1.2 Derivatives and Differentiation
4.1.3 Application of Derivatives
4.1.4 The Differential
4.1.5 Partial Derivatives
4.2 Integral Calculus
4.2.1 Theory of Integrals
4.2.2 Integration Methods
4.2.3 Definite Integrals and Applications
4.2.4 Line and Surface Integrals
4.2.5 Multiple Integrals
5.0 Differential Equations
5.1 First Order Differential Equation
5.1.1 Exact Differential Equation
5.1.2 Integrating Factors**
5.1.3 Separable Variables
5.1.4 Homogeneous Differential Equations
5.1.5 Linear Differential Equations
5.1.6 Applications
5.2 Higher Order Differential Equations
6.0 Other Topics
6.1 Infinite Series
6.1.1 Molaurin Series
6.1.2 Taylor Series
6.1.3 Fourier Series
6.2 Complex Variables**
6.3 Vector Analysis
6.4 Matrices*
6.5 Determinants*
6.6 Probability and Statistics
7.0 Engineering Economy
7.1 Present Economy Study
7.2 Time-Value Relations
7.3 Selection Among Alternatives
7.3.1 Present Worth Method
7.3.2 Annual Worth Method
7.3.3 Future Worth Method
7.3.4 Internal Rate of Return Method
7.3.5 External Rate of Return Method


Surveying

1.0 Surveying Concepts
1.1 Uses of Surveys
1.2 Operations in Surveying
1.3 Measurement and Adjustments
1.4 Field and Office Work
1.5 Surveying Instruments
2.0 Basic Surveying Measurements
2.1 Distance Measurements
2.1.1 Pacing
2.1.2 Distance Measurement with Tape
2.2 Vertical Distance Measurement; Leveling
2.3 Angle and Direction Measurement
2.3.1 Location of Points
2.3.2 Meridians
2.3.3 Bearing and Azimuth
2.3.4 Magnetic Declination
2.3.5 Instruments Used
2.3.5.1 Engineers Transit
2.3.5.2 Theodolite
2.4 Stadia and Tacheometry
2.4.1 Principles of Stadia
2.4.2 Plane Table and Alidade
3.0 Survey Operations
3.1 Traverse
3.1.1 Deflection Angle Traverse
3.1.2 Interior Angle Traverse
3.1.3 Traverse by Angle to the Right
3.1.4 Azimuth Traverse
3.1.5 Compass Traverse
3.1.6 Stadia Traverse
3.1.7 Plane Table Traverse
3.2 Calculation of Areas of Land
3.2.1 Area by Triangle
3.2.2 Area by Coordinates
3.2.3 Area by Double Meridian Distance (DMD) and Latitude
3.2.4 Irregular Boundaries (Simpson’s and Trapezoidal Rules)
3.3 Triangulation and Trilateralization
3.3.1 Horizontal Control System
3.3.2 Triangulation Figures and Procedures
3.3.3 Error Propagation
3.3.4 Trilateralization
3.4 Astronomical Observation
3.4.1 Celestial Sphere
3.4.2 Equator System
3.4.3 The PZS Triangle
3.4.4 Aximuth and Hour Angle at Elongation
3.4.5 Time
3.4.6 Solar Observation
3.4.7 Stellar Observation
4.0 Engineering Surveys
4.1 Topographic Survey
4.1.1 Horizontal Control
4.1.2 Vertical Control (contours)
4.1.3 Location of Details
4.2 Route Surveying
4.2.1 Horizontal Curves
4.2.1.1 Simple Curves
4.2.1.2 Compound Curves
4.2.1.3 Superelations
4.2.1.4 Spiral Curves
4.2.2 Vertical Curves
4.2.3 Earthwork Operations
4.2.3.1 Methods of Determining Earthwork Volumes
4.2.3.2 Borrow Pits
4.3 Hydrographic Surveys
4.3.1 Datum
4.3.2 Soundings

B. HYDRAULICS

1.0 Fluid Mechanics
1.1 Properties of Fluids
1.2 Fluid Statics
1.3 Fluid Flow Concepts and Basic Equations
1.4 Dimensionally Analysis and Dynamic Similitude
1.5 Viscous Flow and Fluid Resistance
1.6 Ideal Fluid Flow
1.7 Steady Flow in Closed Conduits
1.8 Steady Flow in Open Channels
2.0 Hydrology
2.1 Hydrologic Cycle
2.1.1 Precipitation
2.1.2 Streamflow
2.1.3 Evaporations
2.1.4 Transpiration
2.2 Hydrograph Analysis
2.2.1 Runoff
2.2.2 Storage Routing
2.3 Groundwater
3.0 Hydraulics, System and Structure
3.1 Reservoirs
3.2 Dams
3.3 Spillways, Gates, and Outlet Works
3.4 Open Channels
3.5 Pressure Conduits
3.6 Hydraulics Machinery
4.0 Irrigation, Flood Control and Drainage
4.1 Irrigation
4.1.1 Water Requirement
4.1.2 Soil-Water Relation
4.1.3 Water Quality
4.1.4 Methods
4.1.5 Structures
4.2 Flood Control
4.2.1 Design Flood
4.2.2 Flood Control Structures
4.3 Drainage
4.3.1 Estimate of Flow
4.3.2 Storm Drainage
4.3.3 Land and Highway Drainage
4.3.4 Culvets and Bridges
4.3.5 Drainage Structures
5.0 Water Supply and Sewerage
5.1 Fundamental Concept
5.1.1 Mathematics of Growth (Population Forecasting)
5.1.2 Environmental Chemistry
5.1.3 Mass and Energy Transfer
5.2 Water Supply and Treatment
5.2.1 Components of Water Supply System
5.2.1.1 Water Reservoir and Storage
5.2.1.2 Water Distribution System
5.2.1.3 Water Containment Structures
5.2.2 Water Consumptions Periods of Design
5.2.3 Pre-treatment Methods
5.2.4 Principles of Sedimentation
5.2.5 Sedimentation Tank Design
5.2.6 Coagulation-Sedimentation
5.2.7 Slow Sand Filtration
5.2.8 Rapid Sand Filtration
5.2.9 The Rapid Sand Filter
5.2.10 Underdrain System
5.2.11 Wash Troughs
5.2.12 The Washing Process
5.2.13 Clear Well and Plant Capacity
5.2.14 Water Disinfection
5.3 Waste Water Treatment
5.3.1 Quantity
5.3.2 Methods
5.3.3 Theory of Activated Sludge
5.3.4 Aration Tank
5.3.5 Biokinetic Parameters*
5.3.6 Clarifiers

C. DESIGN AND CONSTRUCTION

1.0 Statics of Rigid Bodies
1.1 Force System
1.1.1 Concurrent and Non-current Force System
1.1.2 Parallel and Non-parallel Force System
1.1.3 Planar and Three Dimentional Force System
1.1.4 Distributed Forces
1.1.5 Frictional Forces

1.2 Equilibrium of Forces
1.2.1 Reactions
1.2.2 Free Body Diagram
1.2.3 Two Force Bodies
1.2.4 Three Force Bodies
1.3 Truss Analysis
1.3.1 Method of Joints
1.3.2 Method of Sections
1.3.3 Graphical Methods
1.4 Beams and Frames
1.4.1 Reactions
1.4.2 Shear Diagrams
1.4.3 Bending Moment Diagrams
1.5 Related Topics
1.5.1 Moment of Lines and Areas
1.5.2 Centroids
1.5.3 Moments of Inertia
1.5.4 Center of Mass
1.5.5 Center of Forces
2.0 Dynamics of Rigid Bodies
2.1 Kinematics of Particles
2.1.1 Rectilinear Motion
2.1.2 Curvilinear Motion
2.2 Kinetics of Particles
2.2.1 NewtonÕs Second Law
2.2.2 Dynamic Equilibrium
2.2.3 Work and Energy Principle
2.2.4 Kinetic and Potential Energy
2.2.5 Impulse and Momentum Principle
2.3 Kinematics of Rigid Bodies
2.3.1 Translation
2.3.2 Rotation
2.3.3 General Plane Motion
2.4 Kinetics of Rigid Bodies
2.4.1 DÕLambertÕs Principle
2.4.2 Work and Energy Principle
2.4.3 Impulse and Momentum Principle
3.0 Mechanics
3.1 Stresses and Strains
3.2 Material Properties
3.3 Axially Loaded Members
3.4 Thin Walled Pressure Vessels
3.5 Torsional Stresses
3.6 Internal Forces and Stresses in Beams
3.6.1 Flexural Stress
3.6.2 Shear Stress
3.6.3 Combined Stresses
3.6.4 Principal Stresses
3.6.5 Unsysmetrical Banding
3.7 Deflections
3.7.1 Double Integration Methods
3.7.2 Area Moment Method
3.7.3 Conjugate Beam Method
3.8 Statistically Indetermine Beams
3.9 Shear Center
3.10 Curved Beams
3.11 Nonhomogenous Beams
3.12 Impact Loading
3.13 Stress Concentration
3.14 Repeated Loading
3.15 Elastic Instability (Buckling)
3.16 Analysis of Connections
3.16.1 Riveted and Bolted Connections
3.16.2 Welded
4.0 Structural Analysis
4.1 Loadings
4.1.1 Verical Loads (dead and live loads)
4.1.2 Lateral Loads (Wind and Earthquake Loads)
4.1.3 Impact Loads
4.2 Energy Methods for Deformation Analysis
4.2.1 CastiglianoÕs Theorem
4.2.2 Virtual Work Method (Unit Load)
4.3 Influence Lines
4.4 Frame Analysis
4.4.1 Approximate Methods
4.4.2 Exact Methods*
4.4.3 Moment Distribution
4.5 Stiffness and Flexibility Methods of Analysis**
4.5.1 Trusses
4.5.2 Beams
4.5.3 Frames
5.0 Design of Timber Structures
5.1 Properties of Wood
5.2 Design of Tension Member
5.3 Design of Bending Members
5.3.1 Laterally Supported Beams
5.3.2 Laterally Unsupported Beams
5.4 Design of Compression Members
5.4.1 Short Columns
5.4.2 Slender Columns
5.4.3 Spaced Columns
5.5 Timber Connections
6.0 Design of Steel Structures
6.1 General
6.1.1 Properties of Structural Steel
6.1.2 Design Philosophy
6.1.2.1 Allowable Stress Design
6.1.2.2 Load and Resistance Factor Design
6.2 Tension Members
6.3 Connections
6.3.1 Bolted
6.3.2 Welded
6.4 Compression Members
6.5 Beams
6.5.1 Compact Sections
6.5.2 Non-compact Sections
6.6 Beam Columns
6.7 Plastic Analysis and Limit Design*
6.8 Composite Steel and Concrete
7.0 Reinforced Concrete Structures
7.1 General
7.1.1 Properties of Concrete Materials
7.1.2 Design Philosophies and Procedures
7.2 Flexural Analysis and Design
7.3 Shear and Diagonal Tension
7.4 Bond, Anchorage Development Lengths
7.5 Serviceability Requirements
7.5.1 Crack Control
7.5.2 Deflections
7.6 Columns
7.6.1 Short Columns
7.6.2 Slender Columns
7.7 Slabs
7.8 Footings
7.9 Retaining Wall
7.10 Prestressed Concrete
8.0 Soil Mechanics and Foundation
8.1 Soil Properties
8.2 Soil Classification
8.3 Flow of Water in Soils
8.3.1 Permeability
8.3.2 Seepage
8.3.3 Effective and Porewater Pressure
8.4 Soil Strength
8.4.1 Shear Strength
8.4.2 Bearing Capacity
8.5 Compressibility of Soils
8.5.1 Elastic Settlement
8.5.2 Consolidation Settlement
8.6 Soil Improvement
8.6.1 Compaction
8.6.2 Soil Stabilization
8.7 Earth Pressures and Retaining Wall
8.8 Slope Stability Analysis
9.0 Design of Civil Engineering Structures and Systems
9.1 Transportation Engineering**
9.1.1 Highway and Urban Transportation Planning and Economics**
9.1.2 Driver, Vehicle, Traffic and Road Characteristics**
9.1.3 Highway Design
9.1.4 Traffic Engineering and Highway Operations**
9.1.5 Road and Pavement Design
9.2 Airport Engineering**
9.3 Ports and Harbors
9.4 Containment Structures (Tanks, soils, storage tanks)
9.5 Bridges
10.0 Construction and Management
10.1 Engineering Relations and Ethics**
10.2 Contracts & Specifications
10.3 Construction Project Organization
10.4 Planning and Scheduling (PERT/CPM)
10.5 Construction Estimates
10.6 Construction Methods & Operations
10.7 Construction Equipment Operations and Maintenance

You can read more of the detailed guidelines on the Architecture Board published Syllabi.

http://www.prc.gov.ph/portal_articles.asp?pid=41&sid=123




photo credit, wili_hybrid

0 comments:

Post a Comment

  © Blogger template The Professional Template by Ourblogtemplates.com 2008

Back to TOP